Language
销售热线:18053720666     售后服务电话:4000-228-799
回到顶部

人类观测太阳又多了一双“慧眼” 从一台望远镜“看”源头创新

发布者:
发布时间: 2025-11-18

太阳,这颗距离地球最近的恒星,有诸多未解之谜待揭开。近日,全球首台中红外波段太阳磁场专用观测设备(AIMS望远镜)正式启用,人类观测太阳又多了一双“慧眼”。

“十五五”规划建议提出,“加强基础研究战略性、前瞻性、体系化布局,提高基础研究投入比重,加大长期稳定支持。”支撑高水平科技自立自强的源头创新,离不开基础研究的突破。AIMS望远镜的建成启用,填补了国际上中红外波段太阳磁场观测的空白,也为后续大型天文设备在高海拔地区的建设提供了重要参考。

“从0到1”的探索,打开太阳观测新窗口

太阳大气是由磁场主导的巨大等离子体环境,提高太阳磁场观测精度,对太阳物理基础研究、空间天气预报等都有十分重要的意义。中国科学院国家天文台研究员、AIMS项目负责人邓元勇介绍,“可以说,磁场是太阳物理的第一观测量。”

过去,对太阳磁场的观测以分辨率为第一追求,对测量精度重视不够,国际上的大口径太阳望远镜测量精度普遍在100高斯量级。随着科学研究不断深入,学界逐渐认识到,太阳上的弱磁场研究同样重要,只重视分辨率远远不够,不光要“看得更清”,还要“量得更准”。

“就像拍照片和拍X光片时看到的人体不同,在不同波段观测到的太阳磁场反映的物理过程也不一样。”中国科学院国家天文台研究员、AIMS项目技术负责人王东光说,“AIMS望远镜就是要补上太阳磁场观测在中红外波段缺失的一环。”

“我们以精确的磁场测量为突破口,抢占中红外波段太阳磁场观测先机,确保我国在太阳物理前沿观测阵地上的领先地位。”锚定目标抓紧干,邓元勇带领团队进行攻关。

将磁场测量精度提升至优于10高斯量级;研制出国际上首台既有超高光谱分辨率,又具有成像功能的中红外傅里叶光谱仪,光谱分辨率指标提升至国内原有水平的156倍……自2015年启动研制以来,AIMS望远镜实现了多项关键技术突破。

每一项技术突破的过程,都犹如啃下一块硬骨头。以偏振测量技术为例,团队在可见光波段偏振测量领域已有40余年的技术积累,但是转向中红外波段偏振测量方向,却得从头起步。

当时,国际上没有可用的中红外偏振测量装置,甚至连可用红外波片等关键元器件都没有,同样也没有成熟的偏振检测设备和方法。王东光回忆说,“选材料、探索加工工艺、研制检测仪器,都是从零开始。经过不断调研,我们找到了适合红外偏振测量的硒化镉双折射晶体材料,摸索出波片的抛光工艺,研发出了国际上最大口径的硒化镉中红外波片。”

“做基础研究,最重要的是敢于创新、敢为人先。”邓元勇心里始终憋着一股劲,“我们要以站在国际最前列为目标,如果花了10年做一个设备,结果做出来是‘第二’‘第三’,这样的事情没有意义。”

协同创新,汇聚合力攻坚克难

AIMS望远镜的研制,是一次多学科联合攻关、有组织科研的成功实践。国家天文台总体协调,研制偏振测量系统、8—10微米成像终端系统、探索科学数据分析处理方法、开展工程基建;上海技术物理研究所研制傅里叶光谱仪;西安光学精密机械研究所负责望远镜引导光学系统;云南天文台、昆明物理研究所、南京天文仪器有限公司等多单位合作参与。任务分工协作,项目有序进行。

“一台大型设备的研制,涉及多学科多领域,往往由多个科研院所联合开展,需要准确理解彼此的设计要求,才能保证设备各个部分顺利对接。”王东光说,“我们从最开始就注重顶层设计,将指标、功能进行了深度细分,明确相关技术接口,因此整个项目过程比较顺利,没有出现设计上的返工问题。”

在各方协同努力下,AIMS望远镜的红外终端科学仪器光谱仪和8—10微米成像光路(含探测器芯片)及真空制冷系统等核心部件全部国产化,实现了相关技术的自主可控,体现了我国天文仪器的自主创新能力。

太阳观测设施对选址要求极高:日照时间长是必要条件;红外设备要求气候干燥,避免水汽对观测造成影响;空气越稀薄,探测效果越好……“我们先后调研了5个点位,最终确定了青海冷湖赛什腾山。”邓元勇说。

当地的支持是推进科研项目建设的关键一环。“设施得考虑运行维护,相应的基础设施就不能少。”回忆起选址过程,邓元勇对地方的执行力感触很深,“我们的设施建在山上,人能爬上去,但设备上不去,当地政府就用直升机协助运输。在确定选址后两年左右,基础设施条件就已经完全跟上了。”

青春绽放在高原,传承弘扬科学家精神

“年轻人是建设现场的主力,真正动手去安装、调试,大多是这些年轻人。”谈到团队里的青年科研人员,王东光颇有几分自豪。

在高海拔地区建造设备,需要克服高原高寒、缺氧、物资稀缺等困难。“长达几个月的时间里,我们早晨6点不到就从距离台址80公里的住处出发,赶在道路施工前到达山顶,等施工结束后再回来,到镇里已经是晚上10点。通电之前,在山上吃泡面是常态,能用煤炉煮锅热面条,已经是高级待遇。”王东光说,“即便这样,团队里的年轻人自始至终都没有退缩,也从不抱怨条件艰苦,而是想方设法推进进度。”

AIMS项目团队成员、博士后沈宇樑承担了大量一线工作。作为团队里的90后,他全程参与了望远镜的装调检测工作,并为项目建设贡献了不少聪明才智。有一次,沈宇樑和同事们在山下已经将望远镜的各个部件安装调试过一轮,但到了山顶,望远镜再次集成后,成像质量却明显下降。

“于是,我们先搭建检测光路,重新校验了检测仪器,然后逐个排查影响因素,最终确认是低温导致光学镜面面形发生变化。”沈宇樑说。

找到问题后,前后方联动,研制单位快速设计技术路线,模拟低温检测环境,一点点摸索改进工艺,历时两个多月最终解决了低温影响成像质量的问题。

调试及科学试观测期间,AIMS望远镜已成功获取多个中红外波段的太阳耀斑数据,为揭示太阳剧烈爆发中物质与能量转移机制、研究磁能积累与释放提供了新数据支持。“下一步,我们将把AIMS望远镜维护和运行好,围绕其开展前沿科学研究。”邓元勇说。

加快高水平科技自立自强,离不开“从0到1”的探索勇气,也离不开久久为功的坚持。从遥远的太阳到脚下的高原,一台望远镜的建设见证中国基础研究的自立自强,也望见通向科技强国的未来之路。(记者李君强)


News / 推荐新闻 More
2025 - 12 - 24
点击次数: 2
由美国西北大学主导的一项国际研究利用哈勃空间望远镜,观测到附近行星系统中一次罕见的“宇宙撞击”,揭示了尘埃云可能伪装成行星长达数年。这项发现有助于进一步揭示行星形成机制,深入了解小行星的结构特性,对于双小行星重定向测试(DART)等行星防御计划具有重要意义。该研究成果发表于新一期《科学》杂志。此次“宇宙撞击”的发现过程颇为曲折。自1993年起,科学家就开始借助哈勃空间望远镜观测位于南鱼座、距地球仅25光年的北落师门恒星。该恒星质量略大于太阳,周围环绕着规模庞大、结构复杂的尘埃碎片带,是迄今已知最大的星周尘埃带之一,因而成为理想的研究对象。2008年,团队在星周盘中观测到一个明亮光点,误认为是一颗行星,并将其命名为“北落师门b”。但在2023年,团队通过哈勃空间望远镜再度观测时,发现该光点已消失不见。2024年,他们在该系统内另一位置发现了新的亮斑(命名为“北落师门cs2”),且亮度增强了3...
2025 - 12 - 17
点击次数: 1
“人工智能应该说是一种革命性的技术发展潮流,对于各行各业都是赋能的最佳契机。”12月23日,在国务院新闻办公室就新时代交通运输服务经济社会高质量发展举行的新闻发布会上,交通运输部副部长李扬表示,交通运输行业作为人工智能落地领域,场景多元、数据丰富、应用需求巨大,是一个庞大的人工智能应用场景。交通运输部高度重视人工智能应用。今年9月,交通运输部会同国家发展改革委等六部门,印发《关于“人工智能+交通运输”的实施意见》,对人工智能在公路、铁路、水路、民航、邮政和综合交通方面进行了总体部署,画出了“路线图”。除政策体系不断完善,李扬介绍,在夯实数智底座方面,交通运输部加快建设国家综合交通运输信息平台,谋划和部署综合交通运输大模型,推动打造“数据中枢”和“智慧大脑”;在加快场景培育方面,形成了860项场景应用的“全景图”,聚焦智慧港口、应急物流、国际物流供应链韧性等重点方向,推动建设青岛、绵阳、厦门...
2025 - 12 - 10
点击次数: 4
英国《自然》杂志12月8日公布了年度十大人物榜单,评选出了2025年最重大科学事件的中心人物,DeepSeek创始人梁文锋、中国科学院深海科学与工程研究所地质学家杜梦然上榜。《自然》特写部编辑布兰登·马赫表示:“今年的榜单颂扬了对新前沿的探索,医疗领域突破性进展的希望,对科研诚信的坚定守护,以及那些可以拯救生命的全球政策的制定者。我们激动地看到这么多人在不遗余力地理解自然世界,并在许多情况下帮助这个世界。这是他们入选今年《自然》十大人物的原因。”《自然》介绍称,2025年是科学家拓展知识边界的一年,也是颠覆的一年。中国企业家梁文锋1月推出的DeepSeek惊艳了日新月异的AI界,这个大语言模型的表现媲美现有最先进模型,但构建资源仅需后者的一小部分,与此同时,DeepSeek以“开放权重”(直接发布模型训练后的参数权重而无需重新训练)的形式公开,意味着它能免费下载并扩展,为科研人士...
2025 - 12 - 03
点击次数: 2
记者从中国科学技术大学获悉,该校薛永泉教授课题组领衔的一个国际研究团队,发现了一例非常罕见的、迄今最为暗弱、具有极端光变的源自超大质量双黑洞的X射线潮汐撕裂恒星事件候选体。相关研究成果发表于国际综合期刊《创新》。当一颗恒星无意游走侵入黑洞统治的领域时,宇宙中最强引力场的威压将导致其逐渐变椭。倘若这颗恒星步子迈得太大,跨过了潮汐半径,由于其自身的引力已无法与黑洞潮汐力抗衡,最终它将被狠狠地撕成碎片。大概一半的恒星残骸流会被黑洞吸积并释放强烈电磁波,从而被人们探测到,这就是潮汐撕裂恒星事件——发现黑洞的有效手段。钱德拉南天深场是迄今为止曝光时间最长(约700万秒)从而最深、最灵敏的X射线巡天。研究团队在该深场中发现了一例光变非常有趣的X射线暂现源,即突然变亮从而被探测到、随后变暗直至无法探测的天体,取名为XID 935,其所有的X射线观测时间跨度接近20年。薛永泉介绍,与光学图像对比,XID ...
关闭窗口】【打印
关注我们:
手机云网站:
分享至:
Copyright © 2020山东飞宏工程机械有限公司    
犀牛云提供企业云服务